
CSE 150A-250A AI: Probabilistic Models

Lecture 13
Fall 2025
Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1 / 136

Agenda

Review

Learning in HMMs

Backward Algorithm

2 / 136

Review

Hidden Markov models

• Belief network

S1 S2
. . .

O2O1

S3

O3 OT

ST

observations ot 2 {1, 2, . . . ,m}

states st 2 {1, 2, . . . ,n}

• Parameters
aij = P(St+1= j|St= i) transition matrix
bik = P(Ot=k|St= i) emission matrix
⇡i = P(S1= i) initial state distribution

• Notation

Sometimes we’ll write bi(k) = bik to avoid double
subscripts.

4 / 136

Key computations in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Inference

1. How to compute the likelihood P(o1,o2, . . . ,oT)?

2. How to compute the most likely hidden states argmax~s P(~s|~o)?

3. How to update beliefs by computing P(st|o1,o2, . . . ,ot)?

Learning

How to estimate parameters {⇡i,aij,bik} that maximize the
log-likelihood of observed sequences?

5 / 136

Forward Algorithm

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

↵it = P(o1,o2, . . . ,ot, St= i) n rows

8
>>>>><

>>>>>:

2

666664

↵11 ↵12 · · · ↵1,T�1 ↵1T
↵21 ↵22 · · · ↵2,T�1 ↵2T
...

...
...

...
...

↵n1 ↵n2 · · · ↵n,T�1 ↵nT

3

777775

The forward algorithm fills in the matrix of ↵it elements one
column at a time:

↵i1 = ⇡i bi(o1)

↵j,t+1 =
nX

i=1
↵it aij bj(ot+1)

6 / 136

=

-O

Computing the likelihood P(o1,o2, . . . ,oT)

Sum!

P(o1,o2, . . . ,oT)

=
nX

i=1
P(o1,o2, . . . ,oT , sT= i) marginalization

=
nX

i=1
↵iT sum of last column

7 / 136

Example1

• Two hidden states (Weather): {H, C}
• Observations (Ice creams): {1, 2, 3}

1Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.

8 / 136

Example - Forward Algorithm

↵i1 = ⇡i bi(o1)

↵j,t+1 =
nX

i=1
↵it aij bj(ot+1)

9 / 136

-> T-
>

Viterbi Algorithm

{s⇤1 , s⇤2 , . . . , s⇤T}

= argmaxs1,s2,...,sT P(s1, s2, . . . , sT |o1,o2, . . . ,oT)

= argmaxs1,s2,...,sT logP(s1, s2, . . . , sT ,o1,o2, . . . ,oT)

For a particular sequence of observations {o1,o2, . . . ,oT}, we
define the following matrix:

`⇤it = max
s1,s2,...,st�1

log P(s1, s2, . . . , st�1, St= i,o1,o2, . . . ,ot)

10 / 136

S -

--

= -
-

Viterbi Algorithm

We compute the matrix `⇤ one column at a time, from left to
right:

`⇤i1 = log ⇡i + log bi(o1)

`⇤j,t+1 = max
i


`⇤it + log aij

�
+ log bj(ot+1)

11 / 136

-

Example - Viterbi (Fill `⇤)

12 / 136

= 1)

Computing {s⇤1 , s⇤2, . . . , s⇤T}

• Form one more matrix:

�t+1(j) = argmaxi


`⇤it + log aij

�

• Compute the most likely states by backtracking:

s⇤T = argmaxi


`⇤iT

� Max!

for t = T�1 to 1
s⇤t = �t+1(s⇤t+1)

end

13 / 136

mas f(x))
state arguably, ,

wate

-> - - better

S
Not cold

Computing {s⇤1 , s⇤2, . . . , s⇤T}

• Form one more matrix:

�t+1(j) = argmaxi


`⇤it + log aij

�

• Compute the most likely states by backtracking:

s⇤T = argmaxi


`⇤iT

� Max!

for t = T�1 to 1
s⇤t = �t+1(s⇤t+1)

end

14 / 136

Summary of Viterbi algorithm

• Fill `⇤ matrix from left to right:

t = 1 `⇤i1 = log ⇡i + log bi(o1)

t > 1 `⇤j,t+1 = maxi


`⇤it + log aij

�
+ log bj(ot+1)

• Backtrack through `⇤ from right to left:

t = T s⇤T = argmaxi


`⇤iT

�

t < T s⇤t = argmaxi


`⇤it + log ais⇤t+1

�

Sometimes {s⇤1 , s⇤2 , . . . , s⇤T} is called the Viterbi path.

15 / 136

-

Example - Viterbi (Backtrack through `⇤)

16 / 136

-18-

Learning in HMMs

Learning in HMMs

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st 2 {1, 2, . . . ,n}

18 / 136

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st 2 {1, 2, . . . ,n}

19 / 136

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.

For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st 2 {1, 2, . . . ,n}

20 / 136

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st 2 {1, 2, . . . ,n}

21 / 136

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),

the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st 2 {1, 2, . . . ,n}

22 / 136

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st 2 {1, 2, . . . ,n}

23 / 136

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.

st 2 {1, 2, . . . ,n}

24 / 136

Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st 2 {1, 2, . . . ,n}

25 / 136

How do we estimate {⇡i,aij,bik}?

EM Algorithm!
How EM works in general:

To re-estimate P(Xi=x|pai=⇡) in the M-step,
we must compute P(Xi=x, pai=⇡|V) in the E-step.

26 / 136

How do we estimate {⇡i,aij,bik}?

EM Algorithm!

How EM works in general:

To re-estimate P(Xi=x|pai=⇡) in the M-step,
we must compute P(Xi=x, pai=⇡|V) in the E-step.

27 / 136

How do we estimate {⇡i,aij,bik}?

EM Algorithm!
How EM works in general:

To re-estimate P(Xi=x|pai=⇡) in the M-step,
we must compute P(Xi=x, pai=⇡|V) in the E-step.

28 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

29 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

30 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)

aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

31 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)

bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

32 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

33 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

34 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)

P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

35 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)

P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

36 / 136

-

--v

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT)

= I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

37 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

38 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

39 / 136

-

-

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?

40 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

41 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =

P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

42 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

43 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

44 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

45 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

46 / 136

-

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

47 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

48 / 136

-

Backward Algorithm

We need one more matrix ...

Analogous to ↵it = P(o1,o2, . . . ,ot, St= i),
define �it = P(ot+1,ot+2, . . . ,oT |St= i).

n rows

8
>>>><

>>>>:

2

66664

�11 �12 · · · �1,T�1 �1T
�21 �22 · · · �2,T�1 �2T
...

�n1 �n2 · · · �n,T�1 �nT

3

77775

Understand the differences between these matrices:
• ↵it predicts observations up to and including time t.
• �it predicts observations from time t + 1 to time T .

50 / 136

We need one more matrix ...

Analogous to ↵it = P(o1,o2, . . . ,ot, St= i),

define �it = P(ot+1,ot+2, . . . ,oT |St= i).

n rows

8
>>>><

>>>>:

2

66664

�11 �12 · · · �1,T�1 �1T
�21 �22 · · · �2,T�1 �2T
...

�n1 �n2 · · · �n,T�1 �nT

3

77775

Understand the differences between these matrices:
• ↵it predicts observations up to and including time t.
• �it predicts observations from time t + 1 to time T .

51 / 136

We need one more matrix ...

Analogous to ↵it = P(o1,o2, . . . ,ot, St= i),
define �it = P(ot+1,ot+2, . . . ,oT |St= i).

n rows

8
>>>><

>>>>:

2

66664

�11 �12 · · · �1,T�1 �1T
�21 �22 · · · �2,T�1 �2T
...

�n1 �n2 · · · �n,T�1 �nT

3

77775

Understand the differences between these matrices:
• ↵it predicts observations up to and including time t.
• �it predicts observations from time t + 1 to time T .

52 / 136

We need one more matrix ...

Analogous to ↵it = P(o1,o2, . . . ,ot, St= i),
define �it = P(ot+1,ot+2, . . . ,oT |St= i).

n rows

8
>>>><

>>>>:

2

66664

�11 �12 · · · �1,T�1 �1T
�21 �22 · · · �2,T�1 �2T
...

�n1 �n2 · · · �n,T�1 �nT

3

77775

Understand the differences between these matrices:
• ↵it predicts observations up to and including time t.
• �it predicts observations from time t + 1 to time T .

53 / 136

We need one more matrix ...

Analogous to ↵it = P(o1,o2, . . . ,ot, St= i),
define �it = P(ot+1,ot+2, . . . ,oT |St= i).

n rows

8
>>>><

>>>>:

2

66664

�11 �12 · · · �1,T�1 �1T
�21 �22 · · · �2,T�1 �2T
...

�n1 �n2 · · · �n,T�1 �nT

3

77775

Understand the differences between these matrices:

• ↵it predicts observations up to and including time t.
• �it predicts observations from time t + 1 to time T .

54 / 136

We need one more matrix ...

Analogous to ↵it = P(o1,o2, . . . ,ot, St= i),
define �it = P(ot+1,ot+2, . . . ,oT |St= i).

n rows

8
>>>><

>>>>:

2

66664

�11 �12 · · · �1,T�1 �1T
�21 �22 · · · �2,T�1 �2T
...

�n1 �n2 · · · �n,T�1 �nT

3

77775

Understand the differences between these matrices:
• ↵it predicts observations up to and including time t.

• �it predicts observations from time t + 1 to time T .

55 / 136

We need one more matrix ...

Analogous to ↵it = P(o1,o2, . . . ,ot, St= i),
define �it = P(ot+1,ot+2, . . . ,oT |St= i).

n rows

8
>>>><

>>>>:

2

66664

�11 �12 · · · �1,T�1 �1T
�21 �22 · · · �2,T�1 �2T
...

�n1 �n2 · · · �n,T�1 �nT

3

77775

Understand the differences between these matrices:
• ↵it predicts observations up to and including time t.
• �it predicts observations from time t + 1 to time T .

56 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}

57 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)

�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}

58 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}

59 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}

60 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .

Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}

61 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}

62 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?

By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}

63 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}

64 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P(|ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}
65 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

66 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

67 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=

nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

68 / 136

BC whatdo

have?
z

d

Bit-Ei

Pith =P1)

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=

nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

69 / 136

St
P,)

Y

·Plot--O
=

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

70 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

71 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=

nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

72 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i)

P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)
�

CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

73 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j)

P(ot+2, . . . , oT |St+1= j)
�

CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

74 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=

nX

j=1
aij bj(ot+1)�j,t+1 CPTs

75 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij

bj(ot+1)�j,t+1 CPTs

76 / 136

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)

�j,t+1 CPTs

77 / 136

-

⑤

Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs

78 / 136

C >

Backward algorithm

79 / 136

Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:

80 / 136

Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:

�iT = 1 for i 2 {1, 2, . . . ,n}

�it =
nX

j=1
aij bj(ot+1)�j,t+1

81 / 136

Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:

�iT = 1 for i 2 {1, 2, . . . ,n}

�it =
nX

j=1
aij bj(ot+1)�j,t+1

82 / 136

Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:

�iT = 1 for i 2 {1, 2, . . . ,n}

�it =
nX

j=1
aij bj(ot+1)�j,t+1

83 / 136

Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:

�iT = 1 for i 2 {1, 2, . . . ,n}

�it =
nX

j=1
aij bj(ot+1)�j,t+1

84 / 136

Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:

�iT = 1 for i 2 {1, 2, . . . ,n}

�it =
nX

j=1
aij bj(ot+1)�j,t+1

85 / 136

Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:

�iT = 1 for i 2 {1, 2, . . . ,n}

�it =
nX

j=1
aij bj(ot+1)�j,t+1

86 / 136

Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:

�iT = 1 for i 2 {1, 2, . . . ,n}

�it =
nX

j=1
aij bj(ot+1)�j,t+1

87 / 136

Learning in HMMs - EM Algorithm

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)
= ↵it �it

89 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)

= ↵it �it

90 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)
= ↵it �it

91 / 136

Visually

92 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator
P(St= i,o1,o2, . . . ,oT)

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it �it

• Denominator
P(o1,o2, . . . ,oT) =

X

k
P(St=k,o1,o2, . . . ,oT) marginalization

=
X

k
↵kt �kt by above Note: this holds for all values of t.

93 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =

P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator
P(St= i,o1,o2, . . . ,oT)

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it �it

• Denominator
P(o1,o2, . . . ,oT) =

X

k
P(St=k,o1,o2, . . . ,oT) marginalization

=
X

k
↵kt �kt by above Note: this holds for all values of t.

94 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator
P(St= i,o1,o2, . . . ,oT)

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it �it

• Denominator

P(o1,o2, . . . ,oT) =
X

k
P(St=k,o1,o2, . . . ,oT) marginalization

=
X

k
↵kt �kt by above Note: this holds for all values of t.

95 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator
P(St= i,o1,o2, . . . ,oT)

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it �it

• Denominator
P(o1,o2, . . . ,oT)

=
X

k
P(St=k,o1,o2, . . . ,oT) marginalization

=
X

k
↵kt �kt by above Note: this holds for all values of t.

96 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator
P(St= i,o1,o2, . . . ,oT)

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it �it

• Denominator
P(o1,o2, . . . ,oT) =

X

k
P(St=k,o1,o2, . . . ,oT) marginalization

=
X

k
↵kt �kt by above Note: this holds for all values of t.

97 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator
P(St= i,o1,o2, . . . ,oT)

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it �it

• Denominator
P(o1,o2, . . . ,oT) =

X

k
P(St=k,o1,o2, . . . ,oT) marginalization

=
X

k
↵kt �kt by above

Note: this holds for all values of t.

98 / 136

Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator
P(St= i,o1,o2, . . . ,oT)

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it �it

• Denominator
P(o1,o2, . . . ,oT) =

X

k
P(St=k,o1,o2, . . . ,oT) marginalization

=
X

k
↵kt �kt by above Note: this holds for all values of t.

99 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

Express the numerator P(St = i, St+1= j,o1,o2, . . . ,oT) in terms
of ↵, �, and parameters of the model a, b.

100 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =

P(St= i, St+1= j,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)| {z }

already computed

product rule

Express the numerator P(St = i, St+1= j,o1,o2, . . . ,oT) in terms
of ↵, �, and parameters of the model a, b.

101 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

Express the numerator P(St = i, St+1= j,o1,o2, . . . ,oT) in terms
of ↵, �, and parameters of the model a, b.

102 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

Express the numerator P(St = i, St+1= j,o1,o2, . . . ,oT) in terms
of ↵, �, and parameters of the model a, b.

103 / 136

de

A

--

--

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j,o1, . . . ,oT) = ?

How are you progressing?

A. Not sure where to start.

B. Making progress, but not there yet.

C. I got an answer, but I am not sure if it is right.

D. I finished and feel pretty confident about it.

E. I got lost and wandered off into virtual space.

104 / 136

B
↓
40%

O

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

105 / 136

P(St = i, Sz+ 1
= i)0 ,

- -
- 0f)

=
(PCSt , 0, , . . ., Ot)
-PCSte
,
Oti6

/x(S
++11 (

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =

P(St= i, St+1= j,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)| {z }

already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

106 / 136

Lit
(PCSt , 0, , . . ., Ot)
-i-
P

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

107 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

108 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

109 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) ·

P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

110 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

111 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

112 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

113 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) ·

P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

114 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

115 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) ·

P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

116 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

117 / 136

Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

• Numerator

P(St= i, St+1= j,o1,o2, . . . ,oT)

=


P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1

118 / 136

Visually

119 / 136

Forward-backward algorithm for inference in HMMs

• Summary of E-step:

P(St= i|o1, . . . ,oT) =
↵it �itP
j ↵jt �jt

P(St= i, St+1= j|o1, . . . ,oT) =
↵it aij bj(ot+1)�j,t+1P

k ↵kt �kt

120 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

121 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

122 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)

aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

123 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)

bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

124 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

125 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

126 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i

P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

127 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

128 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij

P
t P(St+1= j, St= i|o1,o2, . . . ,oT)P

t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

129 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

130 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik

P
t I(ot, k)P(St= i|o1,o2, . . . ,oT)P

t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

131 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)

132 / 136

EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i P(S1= i|o1,o2, . . . ,oT)

aij
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)
133 / 136

Question

What is the running time for each iteration of the update?

A. O(n)

B. O(n2)

C. O(Tn2)

D. O(T2n4)

E. O(nT)

134 / 136

X Why ? And /bck
...

Time complexity of HMM computations

T length of observation sequence (o1,o2, . . . ,oT)
n cardinality of state space st 2 {1, 2, . . . ,n}
m cardinality of observation space ot 2 {1, 2, . . . ,m}

• All of the following computations are O(n2T):

(a) computing the likelihood P(o1,o2, . . . ,oT)

(b) decoding argmaxs1,...,sT P(s1, . . . , sT |o1, . . . ,oT)

(c) re-estimating {⇡i,aij,bik} by one update of EM

(d) updating beliefs P(St= i|o1, . . . ,ot) for T steps

135 / 136

That’s all folks!

136 / 136

