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Review



Hidden Markov models

• Belief network

S1 S2
. . .

O2O1

S3

O3 OT

ST

observations ot 2 {1, 2, . . . ,m}

states st 2 {1, 2, . . . ,n}

• Parameters
aij = P(St+1= j|St= i) transition matrix
bik = P(Ot=k|St= i) emission matrix
⇡i = P(S1= i) initial state distribution

• Notation

Sometimes we’ll write bi(k) = bik to avoid double
subscripts.
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Key computations in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Inference

1. How to compute the likelihood P(o1,o2, . . . ,oT)?

2. How to compute the most likely hidden states argmax~s P(~s|~o)?

3. How to update beliefs by computing P(st|o1,o2, . . . ,ot)?

Learning

How to estimate parameters {⇡i,aij,bik} that maximize the
log-likelihood of observed sequences?
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Forward Algorithm

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

↵it = P(o1,o2, . . . ,ot, St= i) n rows

8
>>>>><

>>>>>:

2

666664

↵11 ↵12 · · · ↵1,T�1 ↵1T
↵21 ↵22 · · · ↵2,T�1 ↵2T
...

...
...

...
...

↵n1 ↵n2 · · · ↵n,T�1 ↵nT

3

777775

The forward algorithm fills in the matrix of ↵it elements one
column at a time:

↵i1 = ⇡i bi(o1)

↵j,t+1 =
nX

i=1
↵it aij bj(ot+1)
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Computing the likelihood P(o1,o2, . . . ,oT)

Sum!

P(o1,o2, . . . ,oT)

=
nX

i=1
P(o1,o2, . . . ,oT , sT= i) marginalization

=
nX

i=1
↵iT sum of last column
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Example1

• Two hidden states (Weather): {H, C}
• Observations (Ice creams): {1, 2, 3}

1Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.
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Example - Forward Algorithm

↵i1 = ⇡i bi(o1)

↵j,t+1 =
nX

i=1
↵it aij bj(ot+1)
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Viterbi Algorithm

{s⇤1 , s⇤2 , . . . , s⇤T}

= argmaxs1,s2,...,sT P(s1, s2, . . . , sT |o1,o2, . . . ,oT)

= argmaxs1,s2,...,sT logP(s1, s2, . . . , sT ,o1,o2, . . . ,oT)

For a particular sequence of observations {o1,o2, . . . ,oT}, we
define the following matrix:

`⇤it = max
s1,s2,...,st�1

log P(s1, s2, . . . , st�1, St= i,o1,o2, . . . ,ot)
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Viterbi Algorithm

We compute the matrix `⇤ one column at a time, from left to
right:

`⇤i1 = log ⇡i + log bi(o1)

`⇤j,t+1 = max
i


`⇤it + log aij

�
+ log bj(ot+1)
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Example - Viterbi (Fill `⇤)
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Computing {s⇤1 , s⇤2, . . . , s⇤T}

• Form one more matrix:

�t+1(j) = argmaxi


`⇤it + log aij

�

• Compute the most likely states by backtracking:

s⇤T = argmaxi


`⇤iT

� Max!

for t = T�1 to 1
s⇤t = �t+1(s⇤t+1)

end
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Summary of Viterbi algorithm

• Fill `⇤ matrix from left to right:

t = 1 `⇤i1 = log ⇡i + log bi(o1)

t > 1 `⇤j,t+1 = maxi


`⇤it + log aij

�
+ log bj(ot+1)

• Backtrack through `⇤ from right to left:

t = T s⇤T = argmaxi


`⇤iT

�

t < T s⇤t = argmaxi


`⇤it + log ais⇤t+1

�

Sometimes {s⇤1 , s⇤2 , . . . , s⇤T} is called the Viterbi path.
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Example - Viterbi (Backtrack through `⇤)
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Learning in HMMs



Learning in HMMs

Given: one or more sequences of observations {o1,o2, . . . ,oT}.
For simplicity, we’ll assume just one.

Goal: estimate {⇡i,aij,bik} to maximize P(o1,o2, . . . ,oT),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
st 2 {1, 2, . . . ,n}
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Learning in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST
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How do we estimate {⇡i,aij,bik}?

EM Algorithm!
How EM works in general:

To re-estimate P(Xi=x|pai=⇡) in the M-step,
we must compute P(Xi=x, pai=⇡|V) in the E-step.
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EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• E-step in HMMs must compute:

P(S1= i|o1,o2, . . . ,oT)
P(St+1= j, St= i|o1,o2, . . . ,oT)
P(Ot=k, St= i|o1,o2, . . . ,oT) = I(ot, k)P(St= i|o1,o2, . . . ,oT)

special case of below (t=1)| {z }

How to efficiently compute these posteriors?
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Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)
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Backward Algorithm



We need one more matrix ...

Analogous to ↵it = P(o1,o2, . . . ,ot, St= i),
define �it = P(ot+1,ot+2, . . . ,oT |St= i).

n rows

8
>>>><

>>>>:

2

66664

�11 �12 · · · �1,T�1 �1T
�21 �22 · · · �2,T�1 �2T
... ... ... ... ...

�n1 �n2 · · · �n,T�1 �nT

3

77775

Understand the differences between these matrices:
• ↵it predicts observations up to and including time t.
• �it predicts observations from time t + 1 to time T .
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3

77775

Understand the differences between these matrices:
• ↵it predicts observations up to and including time t.
• �it predicts observations from time t + 1 to time T .
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Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Last column (t = T)
�iT = P( |ST= i) What does this mean?

Note: �it computes the probability of the future given
St= i.

But we don’t see any observations beyond time T .
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

�iT = 1 for all i 2 {1, 2, . . . ,n}
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Computing �it = P(ot+1,ot+2, . . . ,oT |St= i)

• Previous columns (t < T)

�it = P(ot+1, ot+2, . . . , oT |St= i)

=
nX

j=1
P(St+1= j, ot+1, ot+2, . . . , oT |St= i) marginalization

=
nX

j=1


P(St+1= j|St= i) ·

P(ot+1|St= i, St+1= j) ·

P(ot+2, . . . , oT |St= i, St+1= j, ot+1)
�

product rule

=
nX

j=1


P(St+1= j|St= i) P(ot+1|St+1= j) P(ot+2, . . . , oT |St+1= j)

�
CI

=
nX

j=1
aij bj(ot+1)�j,t+1 CPTs
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Backward algorithm
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Backward algorithm

The backward algorithm fills in the matrix of �it elements
one column at a time:
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Learning in HMMs - EM Algorithm



Computing P(St= i|o1, . . . ,oT)

P(St= i|o1, . . . ,oT) =
P(St= i,o1,o2, . . . ,oT)
P(o1,o2, . . . ,oT)

product rule

• Numerator

P(St= i,o1,o2, . . . ,oT)
= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i,o1, . . . ,ot) product rule

= P(o1, . . . ,ot, St= i)P(ot+1, . . . ,oT |St= i) conditional independence

= ↵it P(ot+1, . . . ,oT |St= i)
= ↵it �it
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Visually
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• Denominator
P(o1,o2, . . . ,oT) =

X

k
P(St=k,o1,o2, . . . ,oT) marginalization

=
X

k
↵kt �kt by above Note: this holds for all values of t.
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Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j|o1, . . . ,oT) =
P(St= i, St+1= j,o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)| {z }
already computed

product rule

Express the numerator P(St = i, St+1= j,o1,o2, . . . ,oT) in terms
of ↵, �, and parameters of the model a, b.
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Computing P(St= i, St+1= j|o1, . . . ,oT)

P(St= i, St+1= j,o1, . . . ,oT) = ?

How are you progressing?

A. Not sure where to start.

B. Making progress, but not there yet.

C. I got an answer, but I am not sure if it is right.

D. I finished and feel pretty confident about it.

E. I got lost and wandered off into virtual space.
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
P(o1, . . . ,ot, St= i) · P(St+1= j|o1, . . . ,ot, St= i) ·

P(ot+1|o1, . . . ,ot, St= i, St+1= j) ·

P(ot+2, . . . ,oT |o1, . . . ,ot+1, St= i, St+1= j)
�

product rule

= P(o1, . . . ,ot, St= i) · P(St+1= j|St= i) ·

P(ot+1|St+1= j) · P(ot+2, . . . ,oT |St+1= j) conditional independence

= ↵it aij bj(ot+1)�j,t+1
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Forward-backward algorithm for inference in HMMs

• Summary of E-step:

P(St= i|o1, . . . ,oT) =
↵it �itP
j ↵jt �jt

P(St= i, St+1= j|o1, . . . ,oT) =
↵it aij bj(ot+1)�j,t+1P

k ↵kt �kt
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EM algorithm for HMMs

• CPTs to re-estimate:

⇡i = P(S1= i)
aij = P(St+1= j|St= i)
bik = P(Ot=k|St= i)

• M-step updates:

⇡i  P(S1= i|o1,o2, . . . ,oT)

aij  
P

t P(St+1= j, St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

bik  
P

t I(ot, k)P(St= i|o1,o2, . . . ,oT)P
t P(St= i|o1,o2, . . . ,oT)

(for one sequence of observations)
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Question

What is the running time for each iteration of the update?

A. O(n)

B. O(n2)

C. O(Tn2)

D. O(T2n4)

E. O(nT )
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Time complexity of HMM computations

T length of observation sequence (o1,o2, . . . ,oT)
n cardinality of state space st 2 {1, 2, . . . ,n}
m cardinality of observation space ot 2 {1, 2, . . . ,m}

• All of the following computations are O(n2T):

(a) computing the likelihood P(o1,o2, . . . ,oT)

(b) decoding argmaxs1,...,sT P(s1, . . . , sT |o1, . . . ,oT)

(c) re-estimating {⇡i,aij,bik} by one update of EM

(d) updating beliefs P(St= i|o1, . . . ,ot) for T steps
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That’s all folks!
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