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Review



Hidden Markov models

- Belief network

. . . observations o € {1,2,...,m}
g—é—é— —»é; states st € {1,2,...,n}

- Parameters
aj = P(Stp1=J|St=1i) transition matrix
bir = P(Or=R|St=1) emission matrix
i = P(S1=1) initial state distribution
- Notation

Sometimes we'll write b;(R) = bj, to avoid double
subscripts.
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Key computations in HMMs

1. How to compute the likelihood P(04,0,,...,07)?

2. How to compute the most likely hidden states argmaxz P(5|0)?

3. How to update beliefs by computing P(s¢|01, 02, ..., 0¢)?

How to estimate parameters {m;, a;, bir} that maximize the
log-likelihood of observed sequences?
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Forward Algorithm

For a particular sequence of observations {01,05,...,071},
define the matrix with elements:

Qi@ e T QT

(,Y,t — P(O’]/ 02/ o Ot, S’[:I) o u.zw (\.zz (xz.wa u.zT

—
—

an n2 e Qn, T—1 nT

The forward algorithm fills in the matrix of a;; elements one
column at a time:

ap = mbi(or)
n

0‘Lt‘i1 = aij bj(0t+1)

=1
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Computing the likelihood P(04, 0, . . .,

n rows

P(O1,02, .

Sum!
11 || @12 ap,7-1 |[ear
a1 || 2 az T-1 || ear
xnl A n2 An, T—1 opT
,07)
n
> P(01,05,...,07,57=1) ’ marginalization
P
n
> i [sum of last column]
=

71136



- Two hidden states (Weather): {H, C}

- Observations (Ice creams): {1,2,3}

By

[P(1 | COLD)] [5]
P@|coLp)| = | .4
P@|cop)| |.1

B,

P(1 | HOT) 2
PE|HOT) [ = |4
P(3 | HOT) 4

"Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.
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Example - Forward Algorithm

ajp = mbi(01)
n
iy = E @it Qi bj(0¢41)
=1
,@=32 0,(2)= 32".12.+ 02".1 = 0404
S Py PaH) _ LN\
NS p(c *.2 N j
—%-——'ﬁp
-4»‘5(7/0) \\ //,
& 3
& am=o2 .o ay(1) = 32".2 + 02 25°=.069
- Sy T T 0.
N e 27p(cic) * P(1IC) o
SN AN 0): P
&
S
S

y

t T 9/136



Viterbi Algorithm

{s7,85,...,S7}

———,

C = argmaxs s, . s P(S1,52, .., 57|01,02, ..., OT)
D

= argmaxs s, o 0ZP(S1,52,...,57,01,02,...,07)

—

For a particular sequence of observations {01,0,,...,07}, we
define the following matrix:
o= max |OgP(S1,52,...,St,1,StZI‘,O1,OQ,...,Ot)

It
515525455t -1
g, v'
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Viterbi Algorithm

We compute the matrix /* one column at a time, from left to

right:

log 7; + log bj(01)

max {E,*t + log a,»,} + log bj(0t41)
I -

n rows ’V
|
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Example - Viterbi (Fill ¢*)

(32)=.32 €3(2)= max(.32*.12, .02*.10) = .038
/-\b _— e
PHH)*PAH) N
LH o N <
N (C//y 6*.2 S
/B N .
g * ~ S~o L
D N \::«Z'
Q@\ =0 . ?\\\\r\\ ¢3(1) = max(.32".26;.02":25) = .064
e {,é.? ! ?\\'\\0\5‘ 2 f”/ s
foh £e ___P(CIC) * P(1IC) A
QS o 5*5
&
\'b(\;: N

04 0, 03

\/
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Computing {st,s5,...,s%}

- Form one more matrix: Mook

f f axowedl velud,
gete, T

Piq(j) = argmax; [E;kt + |°ga"/]
A -
L {,c"d_bﬂ \

- Compute the most likely states by backtracking:

e*
S¥ = argmax;|/(: 1,71
-T I|: IT 82,-’—71
Z;Tfl

Fhi- (olef
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Computing {st,s5,...,s%}

- Form one more matrix:

®iq(j) = arg max; [Eﬁ + log a,—,—]

- Compute the most likely states by backtracking:

ST = argmax; [ETT}

fort=T—-1to01

St = Peya(Siy)
end
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Summary of Viterbi algorithm

- Fill #* matrix from left to right:
t=1 0 = logmj+ logbj(01)

G = max [E,*t + log a,'j} + log bj(0t11)

- Backtrack through ¢* from right to left:
S} = argmax; {ﬁ?}]
sf = argmax; [@ft + log CI,—S;«H}

Sometimes {s7,s5,...,s7} is called the Viterbi path.
—
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Example - Viterbi (Backtrack through ¢*)

T T T G ma .02*.10) = .038
=~ ~—

—_—

9 (I/C}
> e
y Q§ N \ o\,‘,«\v\\ 3 = max(:32",20; 02%25) = .064
O e
Ve Fe \__P(CIC) * P(1IC) e @
NSNS o SO 55 _C
\ R
\ \%@&».\ //
Q\o v /
/
/7
\~’/
04 ) 03
t
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Learning in HMMs




Learning in HMMs
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Learning in HMMs
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Learning in HMMs

Given: one or more sequences of observations {01, 02,...,07}.
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Learning in HMMs

Given: one or more sequences of observations {01, 02,...,07}.
For simplicity, we'll assume just one.
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Learning in HMMs

Given: one or more sequences of observations {01, 02,...,07}.
For simplicity, we'll assume just one.

Goal: estimate {m;, aj;, b} to maximize P(01,0z,...,07),
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Learning in HMMs

Given: one or more sequences of observations {01, 02,...,07}.
For simplicity, we'll assume just one.

Goal: estimate {m;, aj;, b} to maximize P(01,0z,...,07),
the likelihood of the observed data.
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Learning in HMMs

333 3

Given: one or more sequences of observations {01, 02,...,07}.
For simplicity, we'll assume just one.

Goal: estimate {m;, aj;, b} to maximize P(01,0z,...,07),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
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Learning in HMMs

333 3

Given: one or more sequences of observations {01, 02,...,07}.
For simplicity, we'll assume just one.

Goal: estimate {m;, aj;, b} to maximize P(01,0z,...,07),
the likelihood of the observed data.

Assume: the cardinality n of the hidden state space is fixed.
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How do we estimate {r;, aj, bjr}?
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How do we estimate {r;, aj, bjr}?

EM Algorithm!
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How do we estimate {r;, aj, bjr}?

EM Algorithm!
How EM works in general:

To re-estimate P(X;j=x|pa;=m) in the M-step,
we must compute P(X;=x, pa;=m|V) in the E-step.
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EM algorithm for HMMs
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EM algorithm for HMMs

- CPTs to re-estimate:
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EM algorithm for HMMs

- CPTs to re-estimate:

o= P(Si=i)
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EM algorithm for HMMs

- CPTs to re-estimate:

o= P(Si=i)
aj; = P(SH :j‘S;:I.)
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EM algorithm for HMMs

- CPTs to re-estimate:

o= P(Si=i)
aj = P(Sea=JISc=1)
bir = P(Or=R|St=i)
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EM algorithm for HMMs

- CPTs to re-estimate:

mo= P(Si=i)
aj; = P(SH :j S;:I.)
b, = P(O:=R|St=1)

- E-step in HMMs must compute:
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EM algorithm for HMMs

- CPTs to re-estimate:

mo= P(Si=i)
aj; = P(SH :j S;:I.)
b, = P(O:=R|St=1)

- E-step in HMMs must compute:
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EM algorithm for HMMs

- CPTs to re-estimate:

mo= P(Si=i)
aj; = P(SH :j S;:I.)
b, = P(O:=R|St=1)

- E-step in HMMs musT\}ompute:
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EM algorithm for HMMs

- CPTs to re-estimate:

mo= P(Si=i)
aj; = P(SH :j S;:I.)
b, = P(O:=R|St=1)

- E-step in HMMs must compute:
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EM algorithm for HMMs

- CPTs to re-estimate:

mo= P(Si=i)
aj; = P(SH :j S;:I.)
b, = P(O:=R|St=1)

- E-step in HMMs must compute:

P(S]—”O],Oz ..... OT)
P(Sty1=J,St=101,02, ..., or)
P(O:=R,St=1|01,02,...,07) = (0, R)P(St=i|01,02,...,07)
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EM algorithm for HMMs

- CPTs to re-estimate:

T o= P(5=)
aj = P(Stp1=j[St=1)
bi = P(O(=k|S:=i)

- E-step in HMMs must compute:

special case of below (t=1)

P($1=i]01,02,...,01) =
)

P(O:=R,St=1|01,02,...,07) = (0, R)P(St=i|01,02,...,07)
YA
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EM algorithm for HMMs

- CPTs to re-estimate:

mo= P(Si=i)
aj; = P(SH :j S;:I.)
b, = P(O:=R|St=1)

- E-step in HMMs must compute:

P(S]—”O],Oz ..... OT) )

, _ special case of below (t=1)
P(Sty1=J,St=101,02, ..., or)
P(O:=R,St=1|01,02,...,07) = (0, R)P(St=i|01,02,...,07)

’ How to efficiently compute these posteriors? ‘
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Computing P(S;=i|oq, ..., 07)
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Computing P(S;=i|oq, ..., 07)

P(S[:i|017...,OT) =

42 /136



Computing P(S;=i|oq, ..., 07)

P(St:i,OW,Oz,...,OT)

P(St:i|017 o .7OT) - P(Oj 07 OT)
y U2y ey
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Computing P(S;=i|oq, ..., 07)

P(St:i,OW,Oz,...,OT)

product rule
P(Oj,027...,OT)

P(S[:i|017...,OT) =

- Numerator
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Computing P(S;=i|oq, ..., 07)

P(St:i,OW,Oz,...,OT)

product rule
P(04,0,,...,07)

P(S[:I|O‘]7.7OT) =

- Numerator

P(St:i701702,.. .,OT)
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Computing P(S;=i|oq, ..., 07)

P(St:ia 01, 02, aOT)

P(St:i|017 o .7OT) - P(Oj 07 . OT)
y U2y ey

- Numerator

P(St:i701702,.. .,OT)

= P(Oq, ceey Ot,St:i) P(Oprq, Ceey OT|5t:i, 01y, Ot) product rule
-
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Computing P(S;=i|oq, ..., 07)

P(St:i,OW,Oz,...,OT)

P(St:i|017 o .7OT) - P(Oq 07 OT)
y U2y ey

- Numerator

P(St:i701702,.. .,OT)

= P(O‘\,...7Ot,5t:’.)P(ot+‘\,.‘.,OT|St:I’,O‘|,..../Ot)

= P(Oj, ..., 0, St:I) P(Ot+1, ey OT|St:i) ’ conditional independence ‘
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Computing P(S;=i|oq, ..., 07)

P(S[:i|017...

- Numerator

P(St:i701702,..
P(Oj,..
P(Oq,..

|I®II

>OT) =

P(St:i,OW,Oz,...

aoT)

.,07)
.01, Si=1)
.,0t,S¢=1)

Iyee s or|S

P(Oq,Oz,...,OT)

P(oty1, ..., 0r|Si=i
P(Ot+1, ey OT|St:i

"ot

product rule

) ’ conditional independence ‘

48 /136



Backward Algorithm




We need one more matrix ...
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We need one more matrix ...

Analogous to ajy = P(04,02,...,0t,St=1),
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We need one more matrix ...

Analogous to ajy = P(04,02,...,0t,St=1),

deﬁneﬂir = P(OIJF\,Oprz,...,OT‘St:i).
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We need one more matrix ...

Analogous to ajy = P(04,02,...,0t,St=1),
define ﬂif = ’D(OTJHvOtJrZa'"7OT‘St:i)'
Bn P o Pir—1 BT
B B o Bor1 Por
n rows . _ _ _ _

/5m 6n2 ﬁn,T—W /jnT
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We need one more matrix ...

Analogous to ajy = P(04,02,...,0t,St=1),
define ﬂif = ’D(OTJHvOtJrZa'"7OT‘St:i)'
Bn P o Pir—1 BT
B B o Bor1 Por
n rows . _ _ _ _
/5m 6n2 o ﬁn,T—W /jnT

Understand the differences between these matrices:
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We need one more matrix ...

Analogous to ajy = P(04,02,...,0t,St=1),
define ﬂiT = ’D(OTJHvOtJrZa'"7OT‘St:i)'
Bn P o Pir—1 BT
B Bn - Bor—1 Por
n rows . _ _ _ _

5m ﬁn2 ﬁn,T—W /jnT

Understand the differences between these matrices:

- «ajp predicts observations up to and including time t.
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We need one more matrix ...

Analogous to ajy = P(04,02,...,0t,St=1),
define ﬂiT = ’D(OTJHvOtJrZa'"7OT‘St:i)'
Bn P o Pir—1 BT
B Bn - Bor—1 Por
n rows . _ _ _ _

5m ﬁn2 ﬁn,T—W /jnT

Understand the differences between these matrices:
- «ajp predicts observations up to and including time t.

- B predicts observations from time t + 1 to time T.
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Computing Si; = P(0t11, 042
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Computing Si; = P(0t11, 042

- Last column (t =T)
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Computing Si; = P(0t11, 042

- Last column (t =T)

Bir = P(___|St=1) What does this mean?
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Computing Si; = P(0t11, 042

- Last column (t =T)

Bir = P(___|St=1) What does this mean?

Note: 3; computes the probability of the future given
St=I.
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Computing Si; = P(0t11, 042

- Last column (t =T)

Bir = P(___|St=1) What does this mean?

Note: 3; computes the probability of the future given
St=I.

But we don't see any observations beyond time T.

61/136



Computing Si; = P(0t11, 042

- Last column (t =T)

Bir = P(___|St=1) What does this mean?

Note: 3; computes the probability of the future given
St=I.

But we don't see any observations beyond time T.
Put another way, the future after time T is unspecified.
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Computing Si; = P(0t11, 042

- Last column (t =T)
Bir = P(___|St=1i) What does this mean?

Note: 3; computes the probability of the future given
St=I.

But we don't see any observations beyond time T.
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
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Computing Si; = P(0t11, 042

- Last column (t =T)

Bir = P(___|St=1) What does this mean?
Note: 3; computes the probability of the future given
St=I.

But we don't see any observations beyond time T.
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:
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Computing Si; = P(0t11, 042

- Last column (t =T)

Bir = P(___|St=1) What does this mean?

Note: 3; computes the probability of the future given
St=I.

But we don't see any observations beyond time T.
Put another way, the future after time T is unspecified.

What is the probability of some unspecified future
occurring?
By definition, we set:

Bir = 1 forall ie{1,2,...,n}
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Computing Si; = P(0t11, 042
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Computing Si; = P(0t11, 042

- Previous columns (t < T)

67 /136



?J wWhok do \
t‘t w\‘a7

B g(o o or|St=1) /\
it \ t+1, Vt4+25 - - -5 Tlot J ‘?‘

- ( Pig-t \}H‘

Bivr = ¥ (Quz" OT\ E‘-‘lrl}
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Computing 8i: = P(0¢11, Ot42, -

- Previous columns (t < T)

Bit = P(0t41,0t42,...,07|St=1)
n
= Z{P(a,m\s[:/).
=
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Computing 8i: = P(0¢11, Ot42, -

- Previous columns (t < T)

Bit = P(0t41,0t42,...,07|St=1)
n
= Z[P(Ssr/\st:o-
=

P(oty1|St=1,5c11=)) -

71/136



Computing 8i: = P(0¢11, Ot42, -

- Previous columns (t < T)

Bit = P(0t41,0t42,...,07|St=1)
n
= Z[P(Ssr/\st:o-
=

P(oty1|St=1,5c11=)) -

P(0t42,...,07|St=1,5 ‘7,/,ot+1)} product rule
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Computing 8i: = P(0¢11, Ot42, -

- Previous columns (t < T)

Bit = P(0t41,0t42,...,07|St=1)
n
= Z[P(Ssr/\st:o-
=

P(oty1|St=1,5c11=)) -

P(0t42,...,07|St=1,5 ‘7,/,ot+1)} product rule
n
= Z |:P(i>; \:;\St:i)

j=1
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Computing 8i: = P(0¢11, Ot42, -

- Previous columns (t < T)

Bit = P(0t41,0t42,...,07|St=1)
n
= Z[P(Ssr/\st:o-
=

P(oty1|St=1,5c11=)) -

P(0t42,...,07|St=1,5 ‘7,/,ot+1)} product rule
n

= Z |:P(i>; ‘:;\St:i) P(OH_W‘S :‘)

j=1
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Computing 8i: = P(0¢11, Ot42, -

- Previous columns (t < T)

Bit = P(0t41,0t42,...,07|St=1)
n
= Z[P(Ssr/\st:o-
=

P(oty1|St=1,5c11=)) -

P(0t42,...,07|St=1,5 ‘7,/,ot+1)} product rule
n

= Z |:P(i>; \:;\St:i) P(OH_W‘S :;‘)P(OH,Q,...,OTlii :/):|

j=1
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Computing 8i: = P(0¢11, Ot42, -

- Previous columns (t < T)

ﬁl[

P(0t41, 0t42, - .-, 07|St =1)

n

- 3 {P(S;,‘f/\S[:i) :

j=1
P(ot1|St=1,5¢11=)) -

P(0t42,...,07|St=1,5 ‘7,/,ot+1)} product rule
n

= Z |:P(i>; \:;\St:i) P(OH_W‘S :;‘)P(OH,Q,...,OTlﬂ */):|

j=1

n
= Za,-/
=1
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Computing St = P(0t41, Ot12, - - ., 07|St=1)

- Previous columns (t < T)

ﬁl[

P(0t41, 0t42, - .-, 07|St=1)

n

= Z |:P(9;7\*,/“5[:/') .

=1
P(oty1|St=1,5c1=)) -

(0142 TISt >t41 t+1) p
n
= Z{P(SX 1 =[St =1) P(0t41]5t11 =) P(Ot+2, - - -, 0T[5 :/)}

J=1 — l\o‘

= Zau (0t21) @ )St'\'l
bt_ 1 Toed %ﬁ



Computing 8i: = P(0¢11, Ot42, -

- Previous columns (t < T)

Bit

P(Ot+1, Oty2, - - -, OT|St=1)

P50 00015 =)
n

= Z |:P(5;,\*,/‘S[:/.) .

=1
P(oty1|St=1,5c1=)) -

n
= Z{P(» =St =1) P(0t11]S: 11 =)) P(0ts3, - - ., OT|S! —,/)]

j=1

= Zau (0t+1) Bj 141
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Backward algorithm
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:

Bir = 1 for ie{1,2,...,n}

Bt = Zau OtJH /BJt—H
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:

Bir = 1 for ie{1,2,...,n}

n
B = Y a;bj(0t41) B

j=1

Bi1 Bz -+ BiT-1
Bor P22 -+ Po,7-1

n rows

/))nl ﬁnZ ,Bn,Tfl
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:

Bir = 1 for ie{1,2,...,n}

n
B = Y a;bj(0t41) B

=
B11 P2 - |PrT-1
Bar Bz -+ |BoT-1
n rows , , _
/))nl ﬁnZ to an,Tfl
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:

Bir = 1 for ie{1,2,...,n}

n
B = Y a;bj(0t41) B

=
B11 P2 B1,7-1
P21 B2 Ba, 71
n rows , , _
/))nl ﬁnZ an,Tfl
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:

Bir = 1 for ie{1,2,...,n}

n
B = Y a;bj(0t41) B

j=1

B1,7-1

Bo -1
n rows .

JBn,Tfl
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:

Bir = 1 for ie{1,2,...,n}

n
B = Y a;bj(0t41) B

j=1

B1,7-1

Bo -1
n rows .

JBn,Tfl
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Backward algorithm

The backward algorithm fills in the matrix of 3;; elements
one column at a time:

Bir = 1 for ie{1,2,...,n}

n
B = Y a;bj(0t41) B

j=1

B1,7-1

Bo -1
n rows .

JBn,Tfl
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Learning in HMMs - EM Algorithm




Computing P(S;=i|oq, ..., 07)
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Computing P(S;=i|oq, ..., 07)

P(St=ilo1,...,071) =

P(St:i,Oq,OQ,...

aOT)

- Numerator

P(StIi7O1,Oz,...7OT)

= P(Oj,...,ot,st:i) P(OtJrj,
= P(Oj,...,ot St:i)P(OtJrq,
= i P(0Ots1,- -, or|St=1)

P(OWaO27"'7OT)

= ) ’ conditional independence ‘
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Computing P(S;=i|os,

) P(Si=i,01,07,...,0
P(Sc=ilon....or) = PEZh0u0neree 1)
) )ty
- Numerator

P(S:=1i,01,04,...,07)

= P(Oj,. , Ot, St—l) Ot+1,...,OT|St:i,O1,..4.,Ot)

P(
= P(Oj, ..., 0, St = I) (Oprq, ey OT|St = I) ’ conditional independence ‘
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ay(j) B()
-— —p

Ot-1 Ot Ot+1
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Computing P(S;=i|oq, ..., 07)
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Computing P(S;=i|oq, ..., 07)
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Computing P(S;=i|oq, ..., 07)

P(St:iao'\;o2a"'aOT)

P(Se=ilon,....on) = ==
Y

- Numerator

P(St:i,01,02, .. .,OT)
= P(Oj,...,Ot,st:i)P(Opﬂ,.‘.,OT|5t:I.,O1,....,Ot)
= P(Oj, ey Ot.,st:i) P(Oprq, ey OT|St:i) ’conditional independence‘

= i Byt

- Denominator
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Computing P(S;=i|oq, ..., 07)

P(St:iao'\;o2a"'aOT)

P(Se=ilon,....on) = ==
Y

- Numerator

P(St:i,01,02, .. .,OT)
= P(Oj,...,Ot,st:i)P(Opﬂ,.‘.,OT|5t:I.,O1,....,Ot)
= P(Oj, ey Ot.,st:i) P(Oprq, ey OT|St:i) ’conditional independence‘

= i Byt

- Denominator

P(Oj,Oz,...,OT)
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Computing P(S;=i|oq, ..., 07)

P(St:iao'\;o2a"'aOT)

P(Se=ilon,....on) = ==
Y

- Numerator

P(St:i,01,02, .. .,OT)
= P(Oj,...,Ot,st:i)P(Opﬂ,.‘.,OT|5t:I.,O1,....,Ot)
= P(Oj, ey Ot.,st:i) P(Oprq, ey OT|St:i) ’conditional independence‘

= i Byt

- Denominator

P(Oj,Oz,...,OT) = ZP(St:k7O‘I7O2a---7OT)
k
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Computing P(S;=i|os,

P(St=1i,01,0,,...,07)

P(Se=ilon,....on) = ==
Y

- Numerator

P(St:i,01,02, .. .,OT)
= P(Oj,...,Ot,st:i)P(Opﬂ,.‘.,OT|5t:I.,O1,....,Ot)
= P(Oj, ey Ot.,st:i) P(Oprq, ey OT|St:i) ’conditional independence‘

= i Byt

- Denominator

P(Oj,Oz,...,OT) = Z (St:k 01702,...,OT)
- Zamﬂm Iz
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Computing P(S;=i|oq, ..., 07)

P(St:iao'\;o2a"'aOT)

P(Se=ilon,....on) = ==
Y

- Numerator

P(St=1,01,0,...,07)

= P(Oj,...,Ot,st:i)P(Opﬂ,.‘.,OT|5t:I.,O1,....,Ot)

= P(Oj, ..., 0, St:I) P(Oprq, ey OT|St:i) ’ conditional independence ‘

= i Byt

- Denominator

P(Oj,Oz,...,OT) = E P(St:k,O'],Oz,...,OT)
R
= E Qlpt ﬂm by above l Note: this holds for all values of t. ‘
k
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Computing P(S;=i, St 1=j|0q, ..., 07)
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St:i,St_H :j|017...707’) =
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St - i7 St+1 :ja 01, 02,

...,OT)
P(04,05,...,07)
—_— —

already computed

P(St:i,St_H :j|017...707’) =
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Computing P(S;=i, St 1=j|0q, ..., 07)

. . P(St=i,Stt1=j,01,07,...,07
P(Se=i, Scer=llon-. 0r) _/“ e OO0 01)
b PR

already computed

Express the numerator P(S¢=1i,St1=J,01,0,,...,07) in terms
of e, 8, and parameters of the model_ci b.

—
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St:f,st_H:j, Oq,...,OT) =7

How are you progressing?
A. Not sure where to start.
B. Making progress, but not there yet.

C.|l got an answer, but | am not sure if it is right.‘/tl oY
D.)! finished and feel pretty confident about it.

@I got lost and wandered off into virtual space.

\.
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Computing P(S;=i, St 1=j|0q, ..., 07)

_wekwu
oL't-tFCO' ~-97 )7 e
<PCS‘('/,-0[,"',O'€)

(St Oge, ., O |
P( Srl \ >
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Computing P(S;=i, St 1=j|0q, ..., 07)
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St=1,St11=J, 01,09,

...,07)
P(Ohoz,...,oT)
—

already computed

P(St=1,St11=jlo1,...,07) =
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St=1,St11=J, 01,09,

...,07)
P(Ohoz,...,oT)
—

already computed

P(St=1,St11=jlo1,...,07) =

- Numerator
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St:ivstJr'l :j7 01, 02,

...,07)
P(Ohoz,...,oT)
—

already computed

P(St=1,St11=jlo1,...,07) =

- Numerator

P(St:i,st_H:j,O%Oz,...,OT)
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator

P(St:i,st+1:j,01702,...,OT)

= |P(01,...,01,5t=1i)
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Computing P(S;=1i,St,1=j|0;

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator

P(St:i,st+1:j,01702,...,OT)

= |P(01,...,0:,5;=1) - P(Sty1=J]01,. .., 0, St=1) -
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Computing P(S;=1i,St,1=j|0;

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator
P(St:i,st+1:j,01702,...,OT)
= |P(01,...,0:,5;=1) - P(Sty1=J]01,. .., 0, St=1) -

P(Ot+q|01 ..... Ot,St:/,St+1:j) :
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator
P(St=1,St+1=j,01,02,...,071)
= |P(01,...,0,St=1) - P(Stz1=J|O1,...,0¢, St =1) -
P(ot44]01, - .-, 01, St=1,St11=J) -

P(Ot+21"'7OT|O17"'7Ot+%5f:j7st+1:j)
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Computing P(S;=i, St 1=j|0q, ..., 07)

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator
P(St=1,St+1=j,01,02,...,071)
= |P(01,...,0,St=1) - P(Stz1=J|O1,...,0¢, St =1) -
P(ot44]01, - .-, 01, St=1,St11=J) -

P(Ot+21"'7OT|O17"'7Ot+%5f:j7st+1:j)
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Computing P(S;=1i,St,1=j|0;

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator

P(St:i,st+1:j,01702,...,OT)

P(01,...,0t,Se=1) - P(Sty1=}]01, ..., 01, St=1) -

P(Ot+q|01 ..... Ot,St:/,St+1:j) :

P(Ot+21"'7OT|O17"'7Ot+%5f:j7st+1:j)

= P(O1,...,OI,S[:I.)~P(St+1:j‘5t:i)-
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Computing P(S;=1i,St,1=j|0;

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator

P(St:i,st+1:j,01702,...,OT)

P(01,...,0t,Se=1) - P(Sty1=}]01, ..., 01, St=1) -

P(Ot+q|01 ..... Ot,St:/,St+1:j) :

P(Ot+21"'7OT|O17"'7Ot+%5f:j7st+1:j)

P(O1,...,Ot,St:i) . P(St-H:j‘St:I) .

P(0t11[Sty1=]) -
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Computing P(S;=1i,St,1=j|0;

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator

P(St:i,st+1:j,01702,...,OT)

P(01,...,0t,Se=1) - P(Sty1=}]01, ..., 01, St=1) -

P(Ot+q|01 ..... Ot,St:/,St+1:j) :

P(Ot+21"'7OT|O17"'7Ot+%5f:j7st+1:j)

P(O1,...,Ot,St:i) . P(St-H:j‘St:I) .

P(Ot+1 |St+1 :]) . P(Ot+2, ey OT‘SHJ :j) ’ conditional independence ‘
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Computing P(S;=1i,St,1=j|0;

P(St:ivstJr'l :j7 01, Oy,

...,07)
P(Ohoz,...,oT)
—

already computed

P(S;=i,Sty1=jl01,...,07) =

- Numerator

P(St:i,st+1:j,01702,...,OT)

P(01,...,0t,Se=1) - P(Sty1=}]01, ..., 01, St=1) -

P(Ot+q|01 ..... Ot,St:/,St+1:j) :

P(Ot+21"'7OT|O17"'7Ot+%5f:j7st+1:j)

P(O1,...,Ot,St:i) . P(St-H:j‘St:I) .

P(Ot+1 |St+1 :]) . P(Ot+2, ey OT‘SHJ :j) ’ conditional independence ‘

= ;0 bj(0t11) By 11
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aijbj(9t+1) —
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Forward-backward algorithm for inference in HMMs

- Summary of E-step:

P(St:f|O1,...

P(St=1,Sty1=j]01, . ..

7OT)

7OT)

aijt Bit

> qjt Bt

@it Qjj bj(0141) Bj 41

>k Okt Bt
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EM algorithm for HMMs
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EM algorithm for HMMs

- CPTs to re-estimate:
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EM algorithm for HMMs

- CPTs to re-estimate:

m o= P(Si=)
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EM algorithm for HMMs

- CPTs to re-estimate:

m o= P(Si=)
a; = P(Sur :/'S“:I')
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EM algorithm for HMMs

- CPTs to re-estimate:
7 = P(Si=i)
a; = P(Sur =J S“:I')
b, = P(O:=R|Si=])

125 /136



EM algorithm for HMMs

- CPTs to re-estimate:
7 = P(Si=i)
a; = P(Sur =J S“:I')
b, = P(O:=R|Si=])

- M-step updates:
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EM algorithm for HMMs

- CPTs to re-estimate:
7 = P(Si=i)
a; = P(Sta=)ISi=i)
b, = P(O:=R|Si=])
- M-step updates:

T 4

127 /136



EM algorithm for HMMs

- CPTs to re-estimate:
m = P(S1=1)
aj = P(St+1=J|St=1)
bix = P(O:=R|S;=1)
- M-step updates:

i  P(S1=i]01,02,...,071)
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EM algorithm for HMMs

- CPTs to re-estimate:
aj = P(Stt1=JISt=1)
b('l? = P(Ot:k|5tzl)

- M-step updates:

i  P(S1=i]01,02,...,071)

aj <+
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EM algorithm for HMMs

- CPTs to re-estimate:
7 = P(Si=i)
aj = P(Sty=jISt=1)
b, = P(O:=R|Si=])
- M-step updates:
i  P(S1=i]01,02,...,071)

> e P(St41=J,St=1]01,02,. .., or7)
> P(Se=il0q,00,. .., or)

U,‘,‘ —
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EM algorithm for HMMs

- CPTs to re-estimate:
7 = P(Si=i)
aj = P(Sty=jISt=1)
b, = P(O:=R|Si=])
- M-step updates:
i  P(S1=i]01,02,...,071)

> e P(St41=J,St=1]01,02,. .., or7)
> P(Se=il0q,00,. .., or)

U,‘,‘ —

b,‘k —
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EM algorithm for HMMs

- CPTs to re-estimate:
7 = P(Si=i)
aj = P(Sty=jISt=1)
b, = P(O:=R|Si=])
- M-step updates:
i  P(S1=i]01,02,...,071)

o > P(Sts1=J,St=1]01,09, .. ., or7)
y S P(St=ilo1,00,. . ., or)

> i 1(ot,R) P(St=il|01,0,,...,07)
Zt P(St:i|01702,. . ~>OT)
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EM algorithm for HMMs

- CPTs to re-estimate:
7 = P(Si=i)
aj = P(Sty=jISt=1)
b, = P(O:=R|Si=])
- M-step updates:
i  P(S1=i]01,02,...,071)

o > P(Sts1=J,St=1]01,09, .. ., or7)
y S P(St=ilo1,00,. . ., or)

> i 1(ot,R) P(St=il|01,0,,...,07)

b, <« .
" > P(St=il01,04,...,07)

(for one sequence of observations)
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What is the running time for each iteration of the update?

A. 0(n)

n?) 7 gwd\ /bdz,.-

B
C. O
D
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Time complexity of HMM computations

T length of observation sequence (01,02, ...,07)
n cardinality of state space st € {1,2,...,n}
m cardinality of observation space o; € {1,2,...,m}

- All of the following computations are O(n’T):

(a) computing the likelihood P(01,0,...,07)

(b) decoding argmaxs, s, P(S1,...,S7]01,...,07T)
(c) re-estimating {m, ajj, bi,} by one update of EM
(d)

d) updating beliefs P(S¢=1|o1,...,0¢) for T steps
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That's all folks!
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